Customize Consent Preferences

We use cookies to help you navigate efficiently and perform certain functions. You will find detailed information about all cookies under each consent category below.

The cookies that are categorized as "Necessary" are stored on your browser as they are essential for enabling the basic functionalities of the site. ... 

Always Active

Necessary cookies are required to enable the basic features of this site, such as providing secure log-in or adjusting your consent preferences. These cookies do not store any personally identifiable data.

Functional cookies help perform certain functionalities like sharing the content of the website on social media platforms, collecting feedback, and other third-party features.

No cookies to display.

Analytical cookies are used to understand how visitors interact with the website. These cookies help provide information on metrics such as the number of visitors, bounce rate, traffic source, etc.

No cookies to display.

Performance cookies are used to understand and analyze the key performance indexes of the website which helps in delivering a better user experience for the visitors.

No cookies to display.

Advertisement cookies are used to provide visitors with customized advertisements based on the pages you visited previously and to analyze the effectiveness of the ad campaigns.

No cookies to display.

Use coupon code “MARCH20” for a 20% discount on all items! Valid until 31-03-2025

Site Logo
Site Logo

Royal Mail  express delivery to UK destinations

Regular sales and promotions

Stock updates every 20 minutes!

Superinsulators, Bose Metals And High-tc Superconductors: The Quantum Physics Of Emergent Magnetic Monopoles

Out of stock

Firm sale: non returnable item
SKU 9789811250958 Categories ,
Select Guide Rating
In 1931 Dirac showed that topologically quantized single magnetic charges, magnetic monopoles, while classically forbidden in a gauge theory, are allowed alongside electric charges in a quantum theory of electromagnetism. Such topological magnetic excitations are indeed admitt...

£80.00

Buy new:

Delivery: UK delivery Only. Usually dispatched in 1-2 working days.

Shipping costs: All shipping costs calculated in the cart or during the checkout process.

Standard service (normally 2-3 working days): 48hr Tracked service.

Premium service (next working day): 24hr Tracked service – signature service included.

Royal mail: 24 & 48hr Tracked: Trackable items weighing up to 20kg are tracked to door and are inclusive of text and email with ‘Leave in Safe Place’ options, but are non-signature services. Examples of service expected: Standard 48hr service – if ordered before 3pm on Thursday then expected delivery would be on Saturday. If Premium 24hr service used, then expected delivery would be Friday.

Signature Service: This service is only available for tracked items.

Leave in Safe Place: This option is available at no additional charge for tracked services.

Description

Product ID:9789811250958
Product Form:Hardback
Country of Manufacture:GB
Title:Superinsulators, Bose Metals And High-tc Superconductors: The Quantum Physics Of Emergent Magnetic Monopoles
Authors:Author: Carlo A Trugenberger
Page Count:248
Subjects:Particle and high-energy physics, Particle & high-energy physics
Description:Select Guide Rating
In 1931 Dirac showed that topologically quantized single magnetic charges, magnetic monopoles, while classically forbidden in a gauge theory, are allowed alongside electric charges in a quantum theory of electromagnetism. Such topological magnetic excitations are indeed admitted in the spectrum of most grand unified field theories of elementary interactions. Despite 40 years of dedicated search efforts, nonetheless, they have never shown up in any experiment. This, however, does not preclude the possibility of topological magnetic monopoles being realized as excitations in emergent condensed matter states, where they would be much lighter and easier to create.This book is about the physical effects of such emergent magnetic monopoles. These range from a new mechanism for local, strong pairing of electrons possibly relevant for high-T superconductivity, to the formation of a new quantum phase of matter when monopoles condense. In such a condensate the electric interaction becomes extremely strong, so much so that only extended neutral states survive, with the consequence of an infinite resistance, even at finite temperatures. This state, called a superinsulator, is a dual superconductor and has been experimentally detected in various materials. In a superinsulator the electric interaction becomes analogous to the strong interaction holding quarks together in colour-neutral hadrons. Even more interesting is the case when the condensate carries both magnetic and electric charge. The ensuing state has properties that are strikingly reminiscent of the mysterious pseudogap state of high-T superconductors. Magnetic monopoles might thus have been hiding in plain sight where no one was looking for them for a long time.
In 1931 Dirac showed that topologically quantized single magnetic charges, magnetic monopoles, while classically forbidden in a gauge theory, are allowed alongside electric charges in a quantum theory of electromagnetism. Such topological magnetic excitations are indeed admitted in the spectrum of most grand unified field theories of elementary interactions. Despite 40 years of dedicated search efforts, nonetheless, they have never shown up in any experiment. This, however, does not preclude the possibility of topological magnetic monopoles being realized as excitations in emergent condensed matter states, where they would be much lighter and easier to create.This book is about the physical effects of such emergent magnetic monopoles. These range from a new mechanism for local, strong pairing of electrons possibly relevant for high-T superconductivity, to the formation of a new quantum phase of matter when monopoles condense. In such a condensate the electric interaction becomes extremely strong, so much so that only extended neutral states survive, with the consequence of an infinite resistance, even at finite temperatures. This state, called a superinsulator, is a dual superconductor and has been experimentally detected in various materials. In a superinsulator the electric interaction becomes analogous to the strong interaction holding quarks together in colour-neutral hadrons. Even more interesting is the case when the condensate carries both magnetic and electric charge. The ensuing state has properties that are strikingly reminiscent of the mysterious pseudogap state of high-T superconductors. Magnetic monopoles might thus have been hiding in plain sight where no one was looking for them for a long time.
Imprint Name:World Scientific Publishing Co Pte Ltd
Publisher Name:World Scientific Publishing Co Pte Ltd
Country of Publication:GB
Publishing Date:2022-05-17