Customize Consent Preferences

We use cookies to help you navigate efficiently and perform certain functions. You will find detailed information about all cookies under each consent category below.

The cookies that are categorized as "Necessary" are stored on your browser as they are essential for enabling the basic functionalities of the site. ... 

Always Active

Necessary cookies are required to enable the basic features of this site, such as providing secure log-in or adjusting your consent preferences. These cookies do not store any personally identifiable data.

Functional cookies help perform certain functionalities like sharing the content of the website on social media platforms, collecting feedback, and other third-party features.

No cookies to display.

Analytical cookies are used to understand how visitors interact with the website. These cookies help provide information on metrics such as the number of visitors, bounce rate, traffic source, etc.

No cookies to display.

Performance cookies are used to understand and analyze the key performance indexes of the website which helps in delivering a better user experience for the visitors.

No cookies to display.

Advertisement cookies are used to provide visitors with customized advertisements based on the pages you visited previously and to analyze the effectiveness of the ad campaigns.

No cookies to display.

Use coupon code “MARCH20” for a 20% discount on all items! Valid until 31-03-2025

Site Logo
Site Logo

Royal Mail  express delivery to UK destinations

Regular sales and promotions

Stock updates every 20 minutes!

Elliptic Curves

1 in stock

Firm sale: non returnable item
SKU 9789811221835 Categories ,
This book uses the beautiful theory of elliptic curves to introduce the reader to some of the deeper aspects of number theory. It assumes only a knowledge of the basic algebra, complex analysis, and topology usually taught in first-year graduate courses.An elliptic curve is a plane curve defined by ...

£110.00

Buy new:

Delivery: UK delivery Only. Usually dispatched in 1-2 working days.

Shipping costs: All shipping costs calculated in the cart or during the checkout process.

Standard service (normally 2-3 working days): 48hr Tracked service.

Premium service (next working day): 24hr Tracked service – signature service included.

Royal mail: 24 & 48hr Tracked: Trackable items weighing up to 20kg are tracked to door and are inclusive of text and email with ‘Leave in Safe Place’ options, but are non-signature services. Examples of service expected: Standard 48hr service – if ordered before 3pm on Thursday then expected delivery would be on Saturday. If Premium 24hr service used, then expected delivery would be Friday.

Signature Service: This service is only available for tracked items.

Leave in Safe Place: This option is available at no additional charge for tracked services.

Description

Product ID:9789811221835
Product Form:Hardback
Country of Manufacture:GB
Title:Elliptic Curves
Authors:Author: James S Milne
Page Count:320
Subjects:Number theory, Number theory
Description:This book uses the beautiful theory of elliptic curves to introduce the reader to some of the deeper aspects of number theory. It assumes only a knowledge of the basic algebra, complex analysis, and topology usually taught in first-year graduate courses.An elliptic curve is a plane curve defined by a cubic polynomial. Although the problem of finding the rational points on an elliptic curve has fascinated mathematicians since ancient times, it was not until 1922 that Mordell proved that the points form a finitely generated group. There is still no proven algorithm for finding the rank of the group, but in one of the earliest important applications of computers to mathematics, Birch and Swinnerton-Dyer discovered a relation between the rank and the numbers of points on the curve computed modulo a prime. Chapter IV of the book proves Mordell's theorem and explains the conjecture of Birch and Swinnerton-Dyer.Every elliptic curve over the rational numbers has an L-series attached to it.Hasse conjectured that this L-series satisfies a functional equation, and in 1955 Taniyama suggested that Hasse's conjecture could be proved by showing that the L-series arises from a modular form. This was shown to be correct by Wiles (and others) in the 1990s, and, as a consequence, one obtains a proof of Fermat's Last Theorem. Chapter V of the book is devoted to explaining this work.The first three chapters develop the basic theory of elliptic curves.For this edition, the text has been completely revised and updated.

This book uses the beautiful theory of elliptic curves to introduce the reader to some of the deeper aspects of number theory. It assumes only a knowledge of the basic algebra, complex analysis, and topology usually taught in first-year graduate courses.

An elliptic curve is a plane curve defined by a cubic polynomial. Although the problem of finding the rational points on an elliptic curve has fascinated mathematicians since ancient times, it was not until 1922 that Mordell proved that the points form a finitely generated group. There is still no proven algorithm for finding the rank of the group, but in one of the earliest important applications of computers to mathematics, Birch and Swinnerton-Dyer discovered a relation between the rank and the numbers of points on the curve computed modulo a prime. Chapter IV of the book proves Mordell's theorem and explains the conjecture of Birch and Swinnerton-Dyer.

Every elliptic curve over the rational numbers has an L-series attached to it.Hasse conjectured that this L-series satisfies a functional equation, and in 1955 Taniyama suggested that Hasse's conjecture could be proved by showing that the L-series arises from a modular form. This was shown to be correct by Wiles (and others) in the 1990s, and, as a consequence, one obtains a proof of Fermat's Last Theorem. Chapter V of the book is devoted to explaining this work.

The first three chapters develop the basic theory of elliptic curves.

For this edition, the text has been completely revised and updated.


Imprint Name:World Scientific Publishing Co Pte Ltd
Publisher Name:World Scientific Publishing Co Pte Ltd
Country of Publication:GB
Publishing Date:2020-09-17