Use coupon code “WINTER20” for a 20% discount on all items! Valid until 30-11-2024

Site Logo
Search Suggestions

      Royal Mail  express delivery to UK destinations

      Regular sales and promotions

      Stock updates every 20 minutes!

      The Art Of Machine Learning: A Hands-On Guide to Machine Learning with R

      4 in stock

      Firm sale: non returnable item
      SKU 9781718502109 Categories ,
      Select Guide Rating
      Machine learning without advanced math! This book presents a serious, practical look at machine learning, preparing you for valuable insights on your own data. The Art of Machine Learning is packed with real dataset examples and sophisticated advice on how to make full use of ...

      £47.99

      Buy new:

      Delivery: UK delivery Only. Usually dispatched in 1-2 working days.

      Shipping costs: All shipping costs calculated in the cart or during the checkout process.

      Standard service (normally 2-3 working days): 48hr Tracked service.

      Premium service (next working day): 24hr Tracked service – signature service included.

      Royal mail: 24 & 48hr Tracked: Trackable items weighing up to 20kg are tracked to door and are inclusive of text and email with ‘Leave in Safe Place’ options, but are non-signature services. Examples of service expected: Standard 48hr service – if ordered before 3pm on Thursday then expected delivery would be on Saturday. If Premium 24hr service used, then expected delivery would be Friday.

      Signature Service: This service is only available for tracked items.

      Leave in Safe Place: This option is available at no additional charge for tracked services.

      Description

      Product ID:9781718502109
      Product Form:Paperback / softback
      Country of Manufacture:GB
      Title:The Art Of Machine Learning
      Subtitle:A Hands-On Guide to Machine Learning with R
      Authors:Author: Norman Matloff
      Page Count:272
      Subjects:Computer programming / software engineering, Computer programming / software development, Machine learning, Machine learning
      Description:Select Guide Rating
      Machine learning without advanced math! This book presents a serious, practical look at machine learning, preparing you for valuable insights on your own data. The Art of Machine Learning is packed with real dataset examples and sophisticated advice on how to make full use of powerful machine learning methods. Readers will need only an intuitive grasp of charts, graphs, and the slope of a line, as well as familiarity with the R programming language. You'll become skilled in a range of machine learning methods, starting with the simple k-Nearest Neighbours method (k-NN), then on to random forests, gradient boosting, linear/logistic models, support vector machines, the LASSO, and neural networks. Final chapters introduce text and image classification, as well as time series. You'll learn not only how to use machine learning methods, but also why these methods work, providing the strong foundational background you'll need in practice. Additional features: How to avoid common problems, such as dealing with 'dirty' data and factor variables with large numbers of levels; A look at typical misconceptions, such as dealing with unbalanced data; Exploration of the famous Bias-Variance Tradeoff, central to machine learning, and how it plays out in practice for each machine learning method; Dozens of illustrative examples involving real datasets of varying size and field of application; Standard R packages are used throughout, with a simple wrapper interface to provide convenient access. After finishing this book, you will be well equipped to start applying machine learning techniques to your own datasets.
      Machine learning without advanced math! This book presents a serious, practical look at machine learning, preparing you for valuable insights on your own data. The Art of Machine Learning is packed with real dataset examples and sophisticated advice on how to make full use of powerful machine learning methods. Readers will need only an intuitive grasp of charts, graphs, and the slope of a line, as well as familiarity with the R programming language. You''ll become skilled in a range of machine learning methods, starting with the simple k-Nearest Neighbours method (k-NN), then on to random forests, gradient boosting, linear/logistic models, support vector machines, the LASSO, and neural networks. Final chapters introduce text and image classification, as well as time series. You''ll learn not only how to use machine learning methods, but also why these methods work, providing the strong foundational background you''ll need in practice. Additional features: How to avoid common problems, such as dealing with ''dirty'' data and factor variables with large numbers of levels; A look at typical misconceptions, such as dealing with unbalanced data; Exploration of the famous Bias-Variance Tradeoff, central to machine learning, and how it plays out in practice for each machine learning method; Dozens of illustrative examples involving real datasets of varying size and field of application; Standard R packages are used throughout, with a simple wrapper interface to provide convenient access. After finishing this book, you will be well equipped to start applying machine learning techniques to your own datasets.
      Imprint Name:No Starch Press,US
      Publisher Name:No Starch Press,US
      Country of Publication:GB
      Publishing Date:2024-01-09

      Additional information

      Weight532 g
      Dimensions178 × 236 × 20 mm