Description
Product ID: | 9781617295874 |
Product Form: | Paperback / softback |
Country of Manufacture: | US |
Title: | Practical Data Science with R |
Authors: | Author: John Mount, Nina Zumel |
Page Count: | 483 |
Subjects: | Data science and analysis: general, Data analysis: general |
Description: | Select Guide Rating This invaluable addition to any data scientist’s library shows you how to apply the R programming language and useful statistical techniques to everyday business situations as well as how to effectively present results to audiences of all levels. To answer the ever-increasing demand for machine learning and analysis, this new edition boasts additional R tools, modeling techniques, and more. Practical Data Science with R, Second Edition takes a practice oriented approach to explaining basic principles in the ever-expanding field of data science. You’ll jump right to real-world use cases as you apply the R programming language and statistical analysis techniques to carefully explained examples based in marketing, business intelligence, and decision support. Key features • Data science and statistical analysis for the business professional • Numerous instantly familiar real-world use cases • Keys to effective data presentations • Modeling and analysis techniques like boosting, regularized regression, and quadratic discriminant analysis Audience While some familiarity with basic statistics and R is assumed, this book is accessible to readers with or without a background in data science. About the technology Business analysts and developers are increasingly collecting, curating, analyzing, and reporting on crucial business data. The R language and its associated tools provide a straightforward way to tackle day-to-day This invaluable addition to any data scientist’s library shows you how to apply the R programming language and useful statistical techniques to everyday business situations as well as how to effectively present results to audiences of all levels. To answer the ever-increasing demand for machine learning and analysis, this new edition boasts additional R tools, modeling techniques, and more. Practical Data Science with R, Second Edition takes a practice oriented approach to explaining basic principles in the ever-expanding field of data science. You’ll jump right to real-world use cases as you apply the R programming language and statistical analysis techniques to carefully explained examples based in marketing, business intelligence, and decision support. Key features • Data science and statistical analysis for the business professional • Numerous instantly familiar real-world use cases • Keys to effective data presentations • Modeling and analysis techniques like boosting, regularized regression, and quadratic discriminant analysis Audience While some familiarity with basic statistics and R is assumed, this book is accessible to readers with or without a background in data science. About the technology Business analysts and developers are increasingly collecting, curating, analyzing, and reporting on crucial business data. The R language and its associated tools provide a straightforward way to tackle day-to-day Nina Zumel and John Mount are co-founders of Win-Vector LLC, a San Francisco-based data science consulting firm. Both hold PhDs from Carnegie Mellon and blog on statistics, probability, and computer science at win-vector.com. |
Imprint Name: | Manning Publications |
Publisher Name: | Manning Publications |
Country of Publication: | GB |
Publishing Date: | 2019-12-13 |